首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1778篇
  免费   106篇
  国内免费   6篇
测绘学   76篇
大气科学   136篇
地球物理   383篇
地质学   714篇
海洋学   136篇
天文学   287篇
综合类   8篇
自然地理   150篇
  2023年   12篇
  2022年   10篇
  2021年   29篇
  2020年   46篇
  2019年   44篇
  2018年   55篇
  2017年   77篇
  2016年   90篇
  2015年   60篇
  2014年   58篇
  2013年   119篇
  2012年   79篇
  2011年   96篇
  2010年   108篇
  2009年   100篇
  2008年   102篇
  2007年   90篇
  2006年   92篇
  2005年   84篇
  2004年   87篇
  2003年   59篇
  2002年   61篇
  2001年   35篇
  2000年   23篇
  1999年   38篇
  1998年   20篇
  1997年   15篇
  1996年   16篇
  1995年   6篇
  1994年   20篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
  1973年   3篇
排序方式: 共有1890条查询结果,搜索用时 312 毫秒
91.
The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.  相似文献   
92.
Natural Hazards - This study presents a new approach to assess storm surge risk from tropical cyclones under climate change by direct calculation of the local flood levels using a limited number of...  相似文献   
93.
Vilca  Oscar  Mergili  Martin  Emmer  Adam  Frey  Holger  Huggel  Christian 《Landslides》2021,18(6):2211-2223

Glacial lakes represent a threat for the populations of the Andes and numerous disastrous glacial lake outburst floods (GLOFs) occurred as a result of sudden dam failures or dam overtoppings triggered by landslides such as rock/ice avalanches into the lake. This paper investigates a landslide-triggered GLOF process chain that occurred on February 23, 2020, in the Cordillera Vilcabamba in the Peruvian Andes. An initial slide at the SW slope of Nevado Salkantay evolved into a rock/ice avalanche. The frontal part of this avalanche impacted the moraine-dammed Lake Salkantaycocha, triggering a displacement wave which overtopped and surficially eroded the dam. Dam overtopping resulted in a far-reaching GLOF causing fatalities and people missing in the valley downstream. We analyze the situations before and after the event as well as the dynamics of the upper portion of the GLOF process chain, based on field investigations, remotely sensed data, meteorological data and a computer simulation with a two-phase flow model. Comparison of pre- and post-event field photographs helped us to estimate the initial landslide volume of 1–2 million m3. Meteorological data suggest rainfall and/or melting/thawing processes as possible causes of the landslide. The simulation reveals that the landslide into the lake created a displacement wave of 27 m height. The GLOF peak discharge at the dam reached almost 10,000 m3/s. However, due to the high freeboard, less than 10% of the lake volume drained, and the lake level increased by 10–15 m, since the volume of landslide material deposited in the lake (roughly 1.3 million m3) was much larger than the volume of released water (57,000 m3, according to the simulation). The model results show a good fit with the observations, including the travel time to the uppermost village. The findings of this study serve as a contribution to the understanding of landslide-triggered GLOFs in changing high-mountain regions.

  相似文献   
94.
Expansion in the world's human population and economic development will increase future demand for fish products. As global fisheries yield is constrained by ecosystems productivity and management effectiveness, per capita fish consumption can only be maintained or increased if aquaculture makes an increasing contribution to the volume and stability of global fish supplies. Here, we use predictions of changes in global and regional climate (according to IPCC emissions scenario A1B), marine ecosystem and fisheries production estimates from high resolution regional models, human population size estimates from United Nations prospects, fishmeal and oil price estimations, and projections of the technological development in aquaculture feed technology, to investigate the feasibility of sustaining current and increased per capita fish consumption rates in 2050. We conclude that meeting current and larger consumption rates is feasible, despite a growing population and the impacts of climate change on potential fisheries production, but only if fish resources are managed sustainably and the animal feeds industry reduces its reliance on wild fish. Ineffective fisheries management and rising fishmeal prices driven by greater demand could, however, compromise future aquaculture production and the availability of fish products.  相似文献   
95.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
96.
Hydraulic roughness over simple subaqueous dunes   总被引:2,自引:1,他引:1  
Detailed studies of flow over subaqueous dunes in laboratory flumes were used to suggest a virtual near-bed layer of twice the dune height in which the mean velocity is accelerated towards the crest by contraction. The mean flow velocity in this layer above the crest, transformed into friction velocity by means of the surface skin roughness, is shown to give values consistent with measured values. The resulting dimensionless shear stress due to skin friction is depth-independent, in contrast to that derived by means of often cited traditional methods. As a result of the relationship between dune height and the thickness of the near-bed layer, an expression for the expansion loss behind dunes was formulated and used to relate form resistance directly to dune height.  相似文献   
97.
98.
The processes acting on a longitudinal dune are inferred from the response in the area size-sorting characteristics of the sediment of the active layer. The sediment size distributions are determined by settling and are best described by a log-hyperbolic model which provides the most information on size-sorting processes. Size-sorting characteristics are markedly different across the low round-crested part of the dune from cross-sections of the high more sharp-crested part. This results in changes in textural parameters along the lee-side consistent with changes in the lee-side separation vortex. This is the first time that the effect of wind speed up on the lee-side is observed to be reflected in the sediment; it can only be detected with the very sensitive log-hyperbolic parameters.  相似文献   
99.
Every basin of higher than first order is drained by a channel network composed of two subnetworks. Their basins are separated by a drainage divide line, called the basin divider, which is the primary organizing feature of the main basin. Each basin of magnitude n contains n – 1 subnetworks of higher order, and is therefore organized by a set of n – 1 dividers. The dividers and the basin boundary are interconnected in a graph called the divider network of the basin; in graph-theoretic terms this network forms a tree and has the same magnitude and link numbers as the channel network draining the basin. While the subbasins and subnetworks of a drainage basin form a nesting hierarchy, the corresponding dividers do not; indeed, any two dividers share at most one node in common, and whether they do so is independent of whether the corresponding subbasins are nesting or disjoint. However, the dividers of nesting basins are linked by recursive relationships which permit the derivation of a set of algebraic equations; these equations relate the dividers of a basin to other basin components; for example, their combined length is equal to half the length of all first-order basin boundaries minus the length of the main basin boundary. The second part of the paper explores the dependence of the divider length on other basin parameters. The expected length, as predicted by the assumption of topological randomness, is clearly rejected by the data. An alternative approach (regression) is based on the observed magnitudes of the subbasins separated by each divider, and is reasonably successful in estimating divider length. The last section introduces the concept of the standardized basin defined by a boundary length of unity; the estimated lengths of the basin divider and the basin boundary permit an approximate reconstruction of the idealized basin shape and the location of the divider in it.  相似文献   
100.
Sediment toxicity and benthic macroinvertebrate community structure were measured as one component of a study cohceived to determine the distribution and effect of sediment contamination in tidal freshwater portions of the Potomac and Anacostia rivers in the Washington, D.C., area. Samples were collected at 15 sites. Analyses included a partial life cycle (28 d) whole sediment test using the amphipod Hyalella azteca (Talitridae) and an assessment of benthic community structure. Survival and growth (as estimated by amphipod length) were experimental endopoints for the toxicity test. Significant mortality was observed in 5 of 10 sites in the lower Anacostia River basin and at the main channel Potomac River site. Sublethal toxicity, as measured by inhibition of amphipod growth, was not observed. Toxicity test results were in general agreement with synoptically measured sediment contaminant concentrations. Porewater total ammonia (NH3+NH4 +) appears to be responsible for the toxicity of sediments from the Potomac River, while correlation analysis and simultaneously extracted metals: acid volatile sulfide (SEM∶AVS) results suggest that the toxicity associated with Anacostia River sediments was due to organic compounds. Twenty-eight macroinvertebrate taxa were identified among all sites, with richness varying from 5 to 17 taxa per site. Groups of benthic assemblages identified by group-average cluster analysis exhibited variable agreement with sediment chemical and sediment toxicity results. Integration of toxicological, chemical, and ecological components suggests that adverse environmental effects manifest in the lower Anacostia River benthos result from chemical contamination of sediment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号